Automatic tumor segmentation using knowledge-based techniques
نویسندگان
چکیده
منابع مشابه
Automatic brain tumor segmentation
This thesis addresses the task of automatically segmenting brain tumors and edema in magnetic resonance images. This is motivated by potential applications in assessing tumor growth, assessing treatment responses, enhancing computer-assisted surgery, planning radiation therapy, and constructing tumor growth models. The presented framework forms an image processing pipeline, consisting of noise ...
متن کاملAutomatic Segmentation of the Gross Tumor Volume in Prostate Carcinoma Using Fuzzy Clustering in Gallium-68 PSMA PET/CT Scan
Introduction: Modern radiotherapy (RT) techniques allow a highly precise deposition of the radiation dose in tumor. So, high conformal tumor doses can be reached while sparing critical organs at risk. Materials and Methods: This study was conducted in three phases. In the first phase; Fourteen patients with primary or recurrent prostate cancer receive Gallium-...
متن کاملAutomatic Brain and Tumor Segmentation
Combining image segmentation based on statistical classification with a geometric prior has been shown to significantly increase robustness and reproducibility. Using a probabilistic geometric model of sought structures and image registration serves both initialization of probability density functions and definition of spatial constraints. A strong spatial prior, however, prevents segmentation ...
متن کاملIntegrating Statistical and Knowledge - based Methods for Automatic Phonemic Segmentation
This thesis presents a prototype system, which integrates statistical and knowledgebased methods, for automatic phonemic segmentation of speech utterances for use in speech production research. First, Aligner, a commercial speech alignment software, synchronizes the speech waveform to the provided text, using hidden Markov models that were trained on phones. Then, a custom built knowledge-based...
متن کاملTowards an automatic tumor segmentation using iterative watersheds
This paper introduces a simple knowledge model on CT (Computed Tomography) images which provides high level information. A novel method called iterative watersheds is then used in order to segment the tumors. Moreover, a fully automatic tumor segmentation method was tested by using image registration. Some preliminary results are very encouraging and give us hope to obtain an interesting tool f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Medical Imaging
سال: 1998
ISSN: 0278-0062
DOI: 10.1109/42.700731